Atomistry » Iron » PDB 8rgr-8spp » 8sfm
Atomistry »
  Iron »
    PDB 8rgr-8spp »
      8sfm »

Iron in PDB 8sfm: Crystal Structure of the Engineered Ssopox Variant IVB10 in Alternate State

Enzymatic activity of Crystal Structure of the Engineered Ssopox Variant IVB10 in Alternate State

All present enzymatic activity of Crystal Structure of the Engineered Ssopox Variant IVB10 in Alternate State:
3.1.8.1;

Protein crystallography data

The structure of Crystal Structure of the Engineered Ssopox Variant IVB10 in Alternate State, PDB code: 8sfm was solved by P.Jacquet, R.Billot, A.Shimon, N.Hoekstra, C.Bergonzi, A.Jenks, D.Daude, M.H.Elias, with X-Ray Crystallography technique. A brief refinement statistics is given in the table below:

Resolution Low / High (Å) 39.72 / 1.50
Space group C 2 2 21
Cell size a, b, c (Å), α, β, γ (°) 64.11, 74.61, 137.69, 90, 90, 90
R / Rfree (%) 20.1 / 23

Other elements in 8sfm:

The structure of Crystal Structure of the Engineered Ssopox Variant IVB10 in Alternate State also contains other interesting chemical elements:

Cobalt (Co) 1 atom

Iron Binding Sites:

The binding sites of Iron atom in the Crystal Structure of the Engineered Ssopox Variant IVB10 in Alternate State (pdb code 8sfm). This binding sites where shown within 5.0 Angstroms radius around Iron atom.
In total only one binding site of Iron was determined in the Crystal Structure of the Engineered Ssopox Variant IVB10 in Alternate State, PDB code: 8sfm:

Iron binding site 1 out of 1 in 8sfm

Go back to Iron Binding Sites List in 8sfm
Iron binding site 1 out of 1 in the Crystal Structure of the Engineered Ssopox Variant IVB10 in Alternate State


Mono view


Stereo pair view

A full contact list of Iron with other atoms in the Fe binding site number 1 of Crystal Structure of the Engineered Ssopox Variant IVB10 in Alternate State within 5.0Å range:
probe atom residue distance (Å) B Occ
D:Fe401

b:17.5
occ:0.63
O2 D:PO4406 2.0 26.8 0.7
NE2 D:HIS24 2.1 24.0 1.0
OQ2 D:KCX137 2.1 25.0 1.0
NE2 D:HIS22 2.1 24.5 1.0
OD1 D:ASP256 2.3 31.7 1.0
O3 D:PO4406 2.5 35.7 0.7
P D:PO4406 2.8 52.1 0.7
CX D:KCX137 3.0 29.3 1.0
CE1 D:HIS24 3.0 24.2 1.0
CD2 D:HIS22 3.0 24.8 1.0
CD2 D:HIS24 3.1 25.0 1.0
CG D:ASP256 3.1 37.7 1.0
CE1 D:HIS22 3.2 29.2 1.0
OQ1 D:KCX137 3.3 26.0 1.0
OD2 D:ASP256 3.4 30.1 1.0
CO D:CO402 3.5 19.8 0.6
O1 D:PO4406 3.8 41.8 0.7
O4 D:PO4406 3.8 43.1 0.7
NZ D:KCX137 4.0 24.3 1.0
ND1 D:HIS24 4.1 23.1 1.0
O D:HOH574 4.2 45.0 1.0
CG D:HIS24 4.2 22.9 1.0
CG D:HIS22 4.2 24.2 1.0
ND1 D:HIS22 4.2 30.0 1.0
CE1 D:HIS199 4.4 27.3 1.0
CB D:ASP256 4.4 32.1 1.0
CG D:PRO67 4.4 25.6 1.0
NE2 D:HIS199 4.4 31.9 1.0
CA D:ASP256 4.9 38.9 1.0

Reference:

P.Jacquet, R.Billot, A.Shimon, N.Hoekstra, C.Bergonzi, A.Jenks, E.Chabriere, D.Daude, M.H.Elias. Changes in Active Site Loops Conformation Relates to A Transition From Lactonase to Phosphotriesterase To Be Published.
Page generated: Sat Aug 10 17:47:51 2024

Last articles

Mg in 4Y52
Mg in 4Y30
Mg in 4Y2V
Mg in 4Y2X
Mg in 4Y2Y
Mg in 4Y2U
Mg in 4Y2T
Mg in 4Y2Q
Mg in 4Y2R
Mg in 4Y2S
© Copyright 2008-2020 by atomistry.com
Home   |    Site Map   |    Copyright   |    Contact us   |    Privacy