Atomistry » Iron
Atomistry »
  Iron »
    History of Iron »
    Mineralogy »
    Isotopes »
    Energy »
    Production »
    Application »
    Physical Properties »
    Chemical Properties »
    Corrosion »
    Iron Salts »
    PDB 101m-1a8f »
    PDB 1a9w-1aop »
    PDB 1aoq-1b2j »
    PDB 1b2o-1biy »
    PDB 1bj9-1c53 »
    PDB 1c6o-1ch2 »
    PDB 1ch3-1cp2 »
    PDB 1cp4-1czp »
    PDB 1d06-1dj5 »
    PDB 1dj7-1dry »
    PDB 1ds1-1dxr »
    PDB 1dxt-1ea1 »
    PDB 1eb7-1esz »
    PDB 1etp-1faw »
    PDB 1fca-1fnp »
    PDB 1fnq-1fz1 »
    PDB 1fz2-1gek »
    PDB 1gem-1gwe »
    PDB 1gwf-1h5f »
    PDB 1h5g-1hdb »
    PDB 1hds-1hxq »
    PDB 1hzu-1ird »
    PDB 1iro-1j3y »
    PDB 1j3z-1jju »
    PDB 1jl6-1k2o »
    PDB 1k2r-1kqg »
    PDB 1kqj-1lfg »
    PDB 1lfk-1lr6 »
    PDB 1lrm-1m6m »
    PDB 1m6z-1mko »
    PDB 1mkq-1mpw »
    PDB 1mpy-1n5u »
    PDB 1n5w-1nmi »
    PDB 1nml-1o1i »
    PDB 1o1j-1off »
    PDB 1ofj-1ozl »
    PDB 1ozr-1pha »
    PDB 1phb-1q5d »
    PDB 1q5e-1qom »
    PDB 1qov-1ra5 »
    PDB 1rak-1rsv »
    PDB 1rte-1sdk »
    PDB 1sdl-1stq »
    PDB 1su6-1tfd »
    PDB 1tfz-1ubh »
    PDB 1ubj-1uvy »
    PDB 1uwm-1vme »
    PDB 1vrb-1w9m »
    PDB 1wa6-1x71 »
    PDB 1x89-1xvc »
    PDB 1xvd-1y4q »
    PDB 1y4r-1yeu »
    PDB 1yev-1yqo »
    PDB 1yqp-1zj9 »
    PDB 1zlq-2ai5 »
    PDB 2aiu-2axx »
    PDB 2ays-2bmm »
    PDB 2bmo-2c1v »
    PDB 2c2c-2ciy »
    PDB 2ciz-2d3q »
    PDB 2d3y-2e1q »
    PDB 2e1s-2eus »
    PDB 2eut-2fkz »
    PDB 2fl0-2g6n »
    PDB 2g6o-2grx »
    PDB 2grz-2hk6 »
    PDB 2hkx-2ibn »
    PDB 2ibz-2j2f »
    PDB 2j2m-2ksu »
    PDB 2l4d-2mta »
    PDB 2mya-2nwb »
    PDB 2nwf-2oof »
    PDB 2orl-2pg7 »
    PDB 2pgh-2q9u »
    PDB 2qbl-2r1l »
    PDB 2r1m-2rfb »
    PDB 2rfc-2v1i »
    PDB 2v1j-2vlz »
    PDB 2vm0-2w3g »
    PDB 2w3h-2wl3 »
    PDB 2wl9-2xdq »
    PDB 2xf2-2xuz »
    PDB 2xv1-2yde »
    PDB 2yeq-2z4g »
    PDB 2z5z-2zpg »
    PDB 2zph-3a0b »
    PDB 3a0g-3ae5 »
    PDB 3ae6-3arj »
    PDB 3ark-3b99 »
    PDB 3b9j-3by0 »
    PDB 3c25-3crb »
    PDB 3crv-3dby »
    PDB 3dcp-3e0f »
    PDB 3e13-3eai »
    PDB 3ebd-3esf »
    PDB 3etr-3fou »
    PDB 3fpv-3gcj »
    PDB 3gck-3h33 »
    PDB 3h34-3hni »
    PDB 3hnj-3i8r »
    PDB 3i9t-3j7b »
    PDB 3jbt-3k9y »
    PDB 3k9z-3kyw »
    PDB 3kyx-3lhb »
    PDB 3lhs-3m2i »
    PDB 3m38-3mma »
    PDB 3mmb-3n5r »
    PDB 3n5s-3na0 »
    PDB 3na1-3nmj »
    PDB 3nmk-3nwv »
    PDB 3nxu-3ojt »
    PDB 3ok5-3p3z »
    PDB 3p4p-3pcl »
    PDB 3pcm-3pt8 »
    PDB 3pu8-3qjq »
    PDB 3qjr-3qzx »
    PDB 3qzz-3rke »
    PDB 3rkh-3s3d »
    PDB 3s48-3sws »
    PDB 3swt-3tfg »
    PDB 3tga-3tyo »
    PDB 3tyw-3uh7 »
    PDB 3uhb-3uv7 »
    PDB 3uw8-3vhb »
    PDB 3vkp-3vsh »
    PDB 3vsi-3wfd »
    PDB 3wfe-3wvs »
    PDB 3wxo-3zjj »
    PDB 3zjl-4a5g »
    PDB 4a6z-4ayb »
    PDB 4b28-4bm3 »
    PDB 4bm4-4cap »
    PDB 4caq-4ctz »
    PDB 4cu0-4d31 »
    PDB 4d32-4dc8 »
    PDB 4dcx-4e6k »
    PDB 4eb3-4ezf »
    PDB 4f0l-4fdk »
    PDB 4fdq-4g2d »
    PDB 4g2g-4ghd »
    PDB 4ghe-4h4d »
    PDB 4h4e-4hm0 »
    PDB 4hm1-4ict »
    PDB 4id8-4iub »
    PDB 4iuc-4jmb »
    PDB 4jms-4k19 »
    PDB 4k36-4kev »
    PDB 4kew-4kvq »
    PDB 4kvr-4l54 »
    PDB 4l6g-4m33 »
    PDB 4m34-4mux »
    PDB 4muy-4ned »
    PDB 4nfg-4nvo »
    PDB 4nxa-4orb »
    PDB 4orc-4pqc »
    PDB 4pv1-4qqz »
    PDB 4qup-4rse »
    PDB 4rsn-4tni »
    PDB 4tnj-4ub8 »
    PDB 4ubg-4ugs »
    PDB 4ugt-4uq8 »
    PDB 4uqh-4w7n »
    PDB 4w7o-4wwj »
    PDB 4wwz-4xme »
    PDB 4xmf-4yet »
    PDB 4yio-4z3z »
    PDB 4z40-4zk6 »
    PDB 4zkh-5ad4 »
    PDB 5ad5-5ao2 »
    PDB 5ao3-5bv5 »
    PDB 5bvg-5cjh »
    PDB 5cmv-5d6s »
    PDB 5d8o-5e9z »
    PDB 5eab-5esk »
    PDB 5esl-5ffi »
    PDB 5fgj-5g5j »
    PDB 5g65-5gxg »
    PDB 5gyr-5hyg »
    PDB 5hyh-5ixv »
    PDB 5ixw-5jpr »
    PDB 5jq2-5kcm »
    PDB 5kd1-5ksk »
    PDB 5ksn-5la3 »
    PDB 5lbh-5lx4 »
    PDB 5lx7-5mdx »
    PDB 5med-5nqd »
    PDB 5nr2-5ofq »
    PDB 5og9-5qj2 »
    PDB 5qj3-5tdt »
    PDB 5tdu-5u8x »
    PDB 5u8z-5uoc »
    PDB 5uod-5v5z »
    PDB 5v8k-5vum »
    PDB 5vun-5w58 »
    PDB 5w97-5x23 »
    PDB 5x24-5xtb »
    PDB 5xtd-5ybt »
    PDB 5yce-5zeo »
    PDB 5zgb-6a7x »
    PDB 6abu-6av4 »
    PDB 6av5-6bgf »
    PDB 6bgm-6c76 »
    PDB 6c7k-6cp4 »
    PDB 6cpp-6dal »
    PDB 6daw-6e03 »
    PDB 6e04-6et5 »
    PDB 6etb-6f8c »
    PDB 6fah-6fz6 »
    PDB 6g0a-6giq »
    PDB 6git-6h63 »
    PDB 6h6c-6hqn »
    PDB 6hqo-6i8i »
    PDB 6i8j-6iss »
    PDB 6iu9-6joa »
    PDB 6jov-6kap »
    PDB 6kaq-6l5v »
    PDB 6l5w-6ma7 »
    PDB 6ma8-6n4k »
    PDB 6n4l-6ngq »
    PDB 6ngr-6nmq »
    PDB 6npa-6o7s »
    PDB 6o9l-6otd »
    PDB 6otw-6pna »
    PDB 6pnb-6pw0 »
    PDB 6pw1-6qkm »
    PDB 6qkn-6rfr »
    PDB 6rfs-6s6u »
    PDB 6s6x-6txa »
    PDB 6txc-6uqn »
    PDB 6us6-7cat »
    PDB 7ccp-9nse »

Element Iron, Fe Ferrum, Transition Metal

About Iron

Metallic iron was not obtained from its naturally occurring compounds at so early a date as some of the other metals, especially copper and tin. This is due to its high point of fusion, and to the much greater difficulty in obtaining it in the metallic state from its compounds. Thus, in prehistoric times iron does not appear till after bronze, i.e. mixtures containing copper as essential constituent, and was apparently at first a great rarity.

Notwithstanding the wide distribution of iron, it scarcely ever occurs in the metallic state on account of its tendency to form compounds with oxygen and sulphur. The chief occurrence of metallic iron, except in some rather accidental cases through the action of chemical processes connected with volcanic activity, is in certain meteorites. These are masses which do not originally belong to the earth, but which, in the course of their flight through space, approach so closely to the earth that, owing to atmospheric friction, they lose their kinetic energy, which is thereby converted into heat, and fall to the earth. Many of these masses consist of iron.

Masses of native iron also occur, although rarely (e.g. at Ofvivak in Greenland), whose meteoric origin is doubtful, although no explanation has been given of any other possible origin.

Iron is a grey, tenacious metal, which fuses with great difficulty, at about 1600°; it combines with free oxygen quickly at high temperatures, slowly at low ones. In the heat essentially compounds of the formula Fe3O4 to Fe2O3 are formed; in the cold, iron hydroxide, Fe(OH)3, is formed. The hydrogen necessary for this is taken up in the form of water; in fact, iron " rusts " or oxidises at a low temperature only in moist, not, or not measurably, in dry air. Since the rust does not cohere, it does not protect the iron against further oxidation.

At all temperatures water is decomposed by iron. The decomposition of water by red-hot iron is a classical experiment. Even at the ordinary temperature decomposition takes place with evolution of hydrogen, but exceedingly slowly, so that the evolution of hydrogen can be observed only by using large surfaces (iron powder). Iron is dissolved even by the weakest acids, thereby passing into divalent diferrion with evolution of hydrogen.

Commercial Iron

Commercial iron is not pure, but contains up to as much as 5 per cent of carbon, which has a very great influence on its properties, and also smaller quantities of other impurities. While pure iron, although very tenacious, is comparatively soft, its hardness increases with the amount of carbon it contains, and its behaviour at moderately high temperatures becomes essentially different.

There are three chief kinds of commercial iron, viz. wrought-iron, steel, and cast-iron; the first contains the smallest, the last the highest, amount of carbon. Wrought-iron approximates most nearly both in composition and in properties to pure iron; it is tough, not very hard, and on being heated first becomes soft like wax or sodium before melting. This property is of the greatest importance for the technical working of iron, as it renders it possible to shape the metal and to unite different pieces without it being necessary to raise the temperature to the melting point of the metal. On the contrary, it is sufficient to heat to the temperature of softening (about 600°), so as to attain the object by pressing, rolling, and forging. The uniting of the two pieces of iron by pressure (hammering) is called welding. The temperature necessary for this is bright red-heat.

The properties of wrought-iron do not undergo essential change when it is heated and suddenly cooled. The character of steel, however, depends in the highest degree on such treatment.

Steel is iron which contains from 0.8 to 2.5 per cent of carbon, but is otherwise as pure as possible. The carbon is chemically combined with the iron, and this carburetted iron or iron carbide, Fe3C, is alloyed with the rest of the iron. The result of the presence of this foreign substance is, in the first place, an appreciable sinking of the melting point; at 1400° steel is liquid and can be cast. Cast-steel is a metal consisting of fine crystalline grains, which, like wrought-iron, softens before melting, and can therefore be forged. By such treatment steel acquires a fibrous or sinewy character, similar to wrought-iron. If the steel is made red hot and then suddenly cooled, it becomes brittle, and at the same time acquires its highest degree of hardness. It is then so hard that it scratches glass, and is hence called glass hard. If this steel is again carefully heated, all degrees of hardness can be imparted to it, for it increases in softness the longer or the higher it is heated. This process is called the tempering of steel.

As an index of the degree of tempering to be attained, use has been made from olden times of the colours which a bright steel surface acquires on being heated. At about 220°, the metal begins to oxidise in the air with a measurable velocity, and the oxide produced forms a thin coating on the metal. If the thickness of this coating is of the order of a wave-length of light, the corresponding interference colours, or the " colours of thin plates," begin to appear. Since the shortest of the visible waves, the violet, is first extinguished, the first tarnish- colour to appear is the complementary colour, pale straw-yellow. This passes through the colours orange, purple, violet, blue, and finally becomes grey. To each of these colours there corresponds a definite degree of hardness of the steel. Steel for tools to work iron is allowed to reach the yellow stage, for brass the purple-red stage, while tools for wood are allowed to become blue. Although colour and hardness do not exactly correspond, still the correspondence is sufficient for an experienced workman.

The great utility of steel in the arts is due to the diversity in the degrees of hardness which it can acquire. In the soft state it can be shaped to any desired form, and the shaped objects can then be brought to any degree of hardness.

It is only in recent years that the theory of tempering has been made clear. Iron carbide, Fe3C, mentioned above, is not only itself very hard, but it forms with pure iron a homogeneous mixture, a " solid solution," which is also hard; so much the less hard, the less carbide it contains. If, now, such a solid solution, consisting at higher temperatures of carbide and iron, is slowly cooled, it breaks up at about 670° into pure iron and iron carbide, which exist as a conglomerate side by side. Since pure iron is soft, it imparts this property also to the mixture.

If, however, the cooling is performed rapidly, the breaking up of the solid solution does not occur, and the latter therefore preserves its hardness. The solid solution hereby becomes metastable or to a certain extent supersaturated.

This explains, in the first place, why quenched steel is hard, while slowly cooled steel is soft. The tempering of hard steel, now, consists in the separation of the solid solution into its two constituents through elevation of the temperature, the separation occurring all the more rapidly the higher the temperature. By sudden cooling, the state of the mixture attained at any point is preserved, since, at the ordinary temperature, the velocity of change is immeasurably small. The corresponding degree of hardness is then obtained.

These considerations also make clear the fact, learned by experience, that the temper depends not only on the temperature but also on the time, in such a way that a lower temperature for a long period has the same effect as a higher temperature for a shorter time.

The tempering can be carried out in one operation by appropriately heating to above 670° until the desired mixture of iron and solid solution (the equilibrium between which alters with the temperature) is produced, and then fixing this state by suddenly cooling. The temperature necessary for obtaining a definite degree of hardness depends on the amount of carbon present. If this is known, the temperature required to produce a given degree of hardness can be decided beforehand.

If the amount of carbon increases to from 4 to 5 per cent, the melting point of the iron becomes still lower, and the metal loses its toughness and the power of assuming the fibrous condition, but it still retains the power of being tempered to a certain degree. Such iron is called cast-iron.

Two kinds of cast-iron are distinguished, white and grey. The former is obtained by quickly cooling; it is very hard and crystalline, and contains the greater part of its carbon chemically combined as carbide. When the cast-iron is slowly cooled, part of the carbon separates out in fine laminae as graphite, which imparts a grey colour to the iron. At the same time the metal becomes less hard and brittle, and the grain finer. In this condition cast-iron is used for innumerable purposes where ease in the shaping of the object by casting has to be taken into account, and where the smaller resistance of the metal to pulling strain and bending is no essential drawback.

Iron History

Main article History of Iron.

Iron is one of the seven metals of the hoary Ancientry. It is supposed that human beings started to work on meteorite iron earlier than with other metals. From the high antiquity iron was extracted from ores which were deposited everywhere.

The Latin ferrum which has become the international comes from Greek-Latin fars (to be hard) which roots in Sanskrit bhars (to harden). The accordance with ferreus, which means "insensitive, tough, hard, inflexible, heavy" and with ferre (to carry) is also possible. Alchemist used, with Ferrum, also other names, such as Iris, Sarsar, Phaulec and so on.

Iron Occurrence

Meteorite iron is not pure. Usually it contains 30% or less other elements. It may be hammered in the cold state, but becomes brittle when heated.

Iron inclusions may be found in basalt and other igneous rocks. It is supposed that find the Earth's core is predominantly iron metal starting from 2900 km depth (the Earth's equatorial radius is 6377 km) and is composed of iron (91-92%) / nickel (8-9%) alloy.

Iron is most abundant element after oxygen, silicon and aluminium. Iron compounds form a great number of minerals and rocks, soils and living organisms; however the iron ores are few. Iron oxide ores are most valuable among them.

Iron is essential to nearly all known organisms, with concentration approximately 0.02%. It is a very essential element for oxygen exchange and oxidizing processes. Some living organisms, so-called iron concentrators are able to deposit large amounts of iron (until 17-20%) within them like, for instance, iron depositing bacteria. Iron in living organisms is almost entirely involved in protein processes. Iron deficiency, aggravated by high soil pH (alkali soils), brings to plants growth inhibition and chlorosis, a condition in which leaves produce insufficient chlorophyll. Iron abundance in the case of low soil pH (acid soils) is also harmful: it causes flowers sterility. Such plant diseases may occur in large areas.

Neighbours

Last articles

Xe in 6AYK
Xe in 6QII
Xe in 6ASM
Xe in 5NSW
Xe in 6FY9
Xe in 5O1K
Xe in 5O27
Xe in 5M69
Xe in 5KPU
Xe in 5I63
© Copyright 2008-2020 by atomistry.com
Home   |    Site Map   |    Copyright   |    Contact us   |    Privacy